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ABSTRACT 
In this paper, the effect of heat and mass transfer of an electrically conducting incompressible fluid which moves 

in presence of magnetic field between two parallel plates and under constant pressure gradient has been studied 

.after forming the governing equation of motion and choosing the suitable boundary conditions, the solution has 

been derived for the velocity of fluid and it has been studied analytically and velocity profile has been represented   

with respect to magnetic field.. it has been found that the magnetic field is very effective in controlling the velocity 

of fluid and graphically justifying the result of the fluid motion. 

 

KEYWORDS: Poiseuille flow; Porous plate; Conducting fluid; Pressure gradient; Heat and Mass Transfer; 

inclined magnetic field; Hartmann number. 
 

INTRODUCTION 
The flow of liquid metals, motel iron and ionize gasses etc. is very important in industrial field which is studied 

in magneto-hydro dynamics and this field concerns the motion of an electrically conducting fluid in the presence 

of magnetic field .It is well known that an electric current is induced when an electrically conducting fluid moves 

in a magnetic field. Thus MHD generators, MHD pumps, and electromagnetic flow meter are based on MHD 

flow. Many persons have worked in this field, but Kuri and Bhadur have concentrated on the effect of magnetic 

field on poiseuille flow between two parallel plates .In the present work focus has been given on the steady MHD 

two dimensions Poiseuille flow between two plates which are placed in an inclined magnetic field. The concerned 

differential equations are formed and solved, after that the graphical representation between the magnetic field 

and velocity has been made and critical studied has been done to find the effect of magnetic on the velocity profile.  

 

FORMULATION OF THE PROBLEM 
Let us consider an electrically conducting, viscous, incompressible fluid move between two infinite parallel plates 

separated by a distance 2d and both plates are at rest. Such a flow indicates a plane Poiseuille flow with constant 

pressure gradient. In the channel Heat and Mass transfer. Suppose origin be at the centre of the channel with x-

axis parallel to the y-axis and perpendicular to the channel walls respectively. The plates are of perpetual figure 

of length, all the variables except the fluid pressure are function of y. 

 

The plates saturated at y= -1 to 1.fluid flow is horizontal along the x-axis. If u and v are components of velocity 

v, for an incompressible fluid. The equation of continuity  vu, = 0. Reduce the form VV
y

v





,0

=constant which indicates, u=u(y). Now, consider V  be the characteristics velocity perpendicular to the fluid 

flow maintain a steady state flow at a constant pressure gradient, this V at the lower plate is one which will 

arrange a steady fluid flow against suction and injection. 

 

The governing differential equations are: 
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Where, 

Bo: magnetic field 

Vo: characteristic velocity 
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 : kinematic viscosity 

σ: electrical conductivity 

ρ= fluid density. 

The equation (2) takes the fluid pressure P=P(x).Let us assume pressure gradient is constant i.e: dp/dx=constant=p 
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Equation(3) represents the fluid under the influence of an inclined magnetic field. Differentiating (3) with respect 

to x. 

The equation (3) reform: 
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The two fields can be calculated in the nature at an angle θ for 0 π. With boundary condition u=0 for y =  

d . 

Using following non-dimensional variables and parameters: 
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Then equation (4) becomes: 
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Normalize, boundary conditions are: 

   u =0    at  y = 1 and   u = 0 at  y = -1 .                                                                               (7) 

 

SOLUTION OF THE PROBLEM 
The equation (6) is ordinary differential with constant coefficient. The corresponding boundary condition (7) then 

becomes: 
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Where 1m and 2m are the roots of the equation obtained from the equation (6) and constants 21 &CC are 

computed with boundary condition (7) and are obtained as: 
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Using the constants values to obtained the solution of the equation (6). 

It will be expressed as: 
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RESULT AND CONCLUSION 
Fig.1 shows the variation of injection velocity of fluid with respect to magnetic field expresed in term of Hartman 

number. On taking θ=15,λ=2,graphs for y=0.005,0.010,0.020 have been obtained. It is clear that as magnetic field 

increases, the velocity in each case decreases sharply up to a minimum value and then it increases rapidly but for 

certain value of magnetic field (=30),dips in curves are obtained in each case. Also in the derived relation of 

velocity (U), the term of magnetic field present in denominator is also existing with the functions of sine and 

cosine which produce wavy velocity profile. As the value of y increases, the graph shifts upwards this means that 

the increasing value of y enhances the amplitude of the velocity because of increasing magnetic force. While fig.2 

shows the variation of suction velocity of fluid with respect to magnetic field expressed in terms of Hartman’s 

number for same values of θ and y but in the case of suction λ= -2 and the result obtained shows that as magnetic 

field increases, the velocity decreases similarly as above . On comparing two velocity profiles, it is found that dips 

are shifting for higher values of magnetic field from suction velocity to injection velocity which is obvious because 

of magnetic attraction. Also the velocity in each case of injection starts from a little higher value and also achieves 

higher values than in case of injection. Thus the magnetic field is quite capable of controlling the velocity of fluid 

in both cases which finds application in industrial use.   

 

 

Figure 1: θ=
15 , λ =2 g =1.2 case of injection 

 

Figure 2: θ=
30 , λ = -2 g=1.2 case of suction 
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