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Abstract 
Modern enterprises increasingly rely on cloud services, mobile devices, and Internet-of- 

Things (IoT) assets, resulting in highly distributed and dynamic attack surfaces. Traditional 

perimeter-based security models and static access control schemes are no longer sufficient to 

protect critical resources against sophisticated adversaries. Zero Trust Architecture (ZTA) has 

emerged as a leading paradigm that enforces the principle of “never trust, always verify” by 

continuously evaluating user identity, device posture, and contextual risk [1, 2]. However, 

current ZTA deployments still rely on logically centralized policy decision points and conven- 

tional logging infrastructures, which raise concerns regarding trust, integrity, and resilience. In 

parallel, intrusion detection systems (IDS) struggle to keep pace with evolving attack 

techniques when they depend solely on signature-based or manually tuned rules [14, 15]. 

This paper proposes a blockchain-enabled zero trust access control framework augmented 

with intelligent, AI-driven intrusion detection for modern cybersecurity systems. The frame- 

work leverages a permissioned blockchain to record identities, access policies, and audit logs 

as tamper-evident, verifiable records, thereby decentralizing trust and strengthening 

accountability [7, 8]. Access control decisions are expressed and enforced through smart 

contracts, while a machine learning–based IDS continuously analyzes network and host 

telemetry to detect anomalies and high-risk behaviors [17, 18]. Detected threats dynami- 

cally influence access decisions via a risk-adaptive feedback loop. We empirically evaluate 

the intelligent IDS component using the UNSW-NB15 dataset, a modern benchmark for 

network intrusion detection research [19]. 

We describe the system and threat models, present the overall architecture, detail the 

machine learning methodology, and report experimental results on detection performance. A 

security and architectural discussion highlights how the proposed approach mitigates key 

attack vectors such as policy manipulation, log tampering, and stealthy lateral movement, il- 

lustrating the potential of combining blockchain, ZTA, and AI-driven IDS in next-generation 

cybersecurity systems. 

 

Keywords—Blockchain security, Zero Trust Architecture (ZTA), access control models, 

intelligent intrusion detection systems (IDS), AI-driven intrusion detection, UNSW-NB15. 

 

1 Introduction 
The rapid adoption of cloud computing, mobile devices, and Internet-of-Things (IoT) tech- 

nologies has transformed the way organizations design and operate their information systems. 

Business-critical workflows increasingly span multiple administrative domains and networks, 

including public clouds, on-premises data centers, software-as-a-service (SaaS) platforms, and 

remote endpoints [3, 4]. 

Adversaries routinely bypass perimeter defenses by exploiting software vulnerabilities, phish- 

ing credentials, abusing misconfigurations, or compromising third-party providers. Once inside, 
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they can perform stealthy lateral movement, privilege escalation, and data exfiltration, often 

remaining undetected for extended periods [1, 2, 18]. Access to resources is granted only af- 

ter continuous verification of user identity, device posture, and contextual attributes such as 

geolocation, time of access, and behavioral signals. 

While ZTA significantly improves security compared to legacy models, many current 

imple- mentations rely on logically centralized policy decision points (PDPs) and conventional 

logging infrastructures [4, 5]. This centralization introduces single points of failure and raises 

concerns about the integrity, availability, and auditability of access control decisions and 

security log [24]. An attacker who manages to tamper with policy stores or logging systems 

may be able to mis- represent access decisions, erase traces of malicious activity, or subvert 

compliance reporting. By anchoring identities, policies, and audit logs on a permissioned 

blockchain, our framework provides a tamper-resistant control plane in which unauthorized 

modifications to critical secu- rity data are significantly harder to perform and easier to detect 

[14, 15]. 

Although effective against previously observed threats, such systems often fail to detect zero-day 

exploits, polymorphic malware, and subtle lateral movement. The increasing volume, velocity, 

and variety of network and host telemetry further challenge traditional IDS designs, necessitat- 

ing more scalable and intelligent approaches [17]. 

Recent advances in machine learning (ML) and artificial intelligence (AI) have enabled 

more capable IDS solutions that can model normal behavior, identify anomalies, and adapt to 

evolving attack techniques [20–22]. At the same time, blockchain technology has demonstrated 

strong guarantees of integrity, tamper-evidence, and decentralization, and has been explored for 

secure logging, identity management, and access control in distributed environments [7, 9–11]. 

Integrating these technologies within a coherent Zero Trust framework offers an opportunity to 

strengthen both the trust layer and the detection layer of modern cybersecurity systems. 

This paper argues that combining blockchain technology, Zero Trust access control, and AI- 

driven intrusion detection can address several shortcomings of existing approaches. Blockchain’s 

decentralization and immutability can enhance the trustworthiness and resilience of identity 

management, policy enforcement, and audit logging [8, 13]. Meanwhile, intelligent IDS can 

provide continuous, data-driven risk assessment that informs and adapts access control decisions. 

To assess the feasibility of this vision, we design and evaluate an ML-based IDS component using 

the UNSW-NB15 dataset, a comprehensive modern network intrusion detection benchmark [19]. 

The main contributions of this work are: 

• We propose a blockchain-enabled Zero Trust access control framework in which identities, 

access policies, and audit logs are anchored on a permissioned blockchain, enabling tamper- 

evident and verifiable security controls. 

• We integrate an AI-driven intrusion detection component that analyzes network flow fea- tures 

and contextual signals to detect malicious behavior and dynamically influence risk- adaptive 

access decisions. 

• We present a machine learning methodology and experimental evaluation of the IDS com- 

ponent using the UNSW-NB15 dataset, and we discuss architectural trade-offs, limita- tions, 

and future research directions for end-to-end deployment. 

The rest of this paper is structured as follows. Section 2 surveys related work on Zero 

Trust Architecture (ZTA), blockchain-based access control, and intelligent intrusion detection 

systems. Section 3 details the proposed architecture and methodology. Section 4 describes the 

experimental setup and reports the results obtained using the UNSW-NB15 dataset. Section 5 

discusses the implications, advantages, and limitations of the proposed approach. Finally, 

Section 6 concludes the paper. 
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2 State of the Art 
This section reviews related work in four main areas: Zero Trust Architectures, blockchain-based 

access control and logging, intelligent intrusion detection systems, and datasets for evaluating 

IDSs. We highlight key contributions and limitations, and identify research gaps that motivate 

our proposed framework. 

 

2.1 Zero Trust Architecture 
The Zero Trust security model was initially articulated by Kindervag in a foundational industry 

report that challenged the reliance on implicit trust derived from network perimeters [2]. Since 

then, the concept has been extensively expanded by both academia and industry into a com- 

prehensive architectural paradigm. The U.S. National Institute of Standards and Technology 

(NIST) subsequently codified Zero Trust principles and reference architectures in Special Pub- 

lication 800-207, highlighting continuous verification, least-privilege access, and policy-driven 

decision-making as core elements of the approach [1]. 

Recent surveys have analyzed ZTA concepts, deployment patterns, and challenges in large- 

scale environments [3,4,6]. These works highlight that, in practice, ZTA deployments often rely 

on centralized identity providers, policy engines, and data repositories, which may become at- 

tractive targets and single points of failure. Some authors have proposed federated or distributed 

approaches to mitigate these issues, but relatively few have explored the use of blockchains to 

provide decentralized and tamper-evident policy and logging layers [5]. 

Moreover, the integration of advanced analytics and machine learning into ZTA decision- 

making remains a developing area. While many commercial ZTA solutions incorporate risk 

scores or behavioral analysis in access decisions, the underlying models and their systemic 

integration are often proprietary and not rigorously evaluated in the literature [6]. 

 

2.2 Blockchain for Access Control and Logging 
Blockchain technology, introduced with Bitcoin as a decentralized ledger for digital currency 

[7], has been widely studied for its integrity, transparency, and fault tolerance. Surveys on 

blockchain security and applications underline its potential for secure logging, audit trails, and 

distributed access control in multi-stakeholder environments [9, 13, 25]. 

Permissioned blockchain platforms such as Hyperledger Fabric support configurable mem- 

bership, pluggable consensus, and smart contracts, enabling enterprise-oriented access control 

solutions [8]. Several works have proposed blockchain-based access control mechanisms for IoT, 

cloud, and data-sharing scenarios, where policies and capabilities are encoded as transactions or 

smart contracts [10–12]. These schemes aim to eliminate centralized policy stores and provide 

tamper-evident records of authorization decisions and resource usage. 

However, many existing blockchain-based access control proposals focus on static or coarse- 

grained policies, and often do not integrate real-time risk assessment or intrusion detection 

signals into the policy evaluation process [10, 12, 25]. Additionally, scalability, latency, and 

pri- vacy concerns limit the direct use of blockchains for high-volume, low-latency security 

telemetry streams. 

 

2.3 Intrusion Detection Systems and Machine Learning 

Denning’s pioneering work defined an intrusion-detection model based on anomaly detection 

and audit data analysis [14]. Subsequent efforts classified IDSs into signature-based (misuse 

detection) and anomaly-based systems, as well as into host-based and network-based deploy- 

ments [15, 16]. 

With the increasing complexity of network environments and attacks, machine learning has 

become a central tool in IDS research. Surveys and empirical studies have compared classical 
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ML techniques and deep learning approaches (e.g., autoencoders, convolutional and recurrent 

neural networks) for intrusion detection tasks [17,20–22]. These works generally report improved 

detection rates and generalization compared to purely signature-based systems, especially for 

previously unseen attacks. 

Nevertheless, several challenges remain. Anomaly-based methods can suffer from high false- 

positive rates, concept drift in dynamic environments, and difficulties in explaining model de- 

cisions to human analysts [18]. Moreover, many ML-based IDS proposals are evaluated on 

dated or unrealistic datasets, limiting their relevance to contemporary threats and network 

conditions [17]. 

 

2.4 Intrusion Detection Datasets 
The availability of representative datasets is crucial for designing, training, and evaluating 

IDSs. Early benchmark datasets such as KDD’99 and its variants have been widely used but 

criticized for multiple issues, including redundancy, unrealistic traffic patterns, and outdated 

attack scenarios [17]. 

UNSW-NB15 is a comprehensive dataset generated in a controlled testbed, combining real- 

istic benign traffic with modern synthetic attack scenarios [19]. It includes packet captures and 

derived flow features, along with binary labels (normal vs. attack) and multi-class attack cate- 

gories. Subsequent studies have used UNSW-NB15 to evaluate and compare various ML-

based IDSs, including deep learning models [20, 21, 23]. 

Despite these advances, there is still a need to better integrate dataset-driven IDS evalua- 

tion with broader architectural considerations such as Zero Trust and blockchain-based control 

planes. Most prior works either focus on IDS accuracy in isolation or treat blockchain/ZTA 

components only conceptually without a concrete data-driven evaluation of detection perfor- 

mance. 

In summary, the literature shows active research on Zero Trust architectures [1,3,4], 

blockchain- based access control and logging [8–12], and ML models [17, 19–22]. However, 

there is compar- atively little work on tightly integrating these components into a coherent, 

risk-adaptive Zero Trust framework that leverages blockchain for trustworthy policy and 

logging, and AI-based IDS for continuous risk assessment [5, 6, 23]. 

Our work addresses this gap by (i) proposing an end-to-end architecture that combines a 

permissioned blockchain with Zero Trust access control, and (ii) implementing and empiri- 

cally evaluating an intelligent IDS component using the UNSW-NB15 dataset, explicitly 

linking detection outcomes to dynamic access control decisions. 

 

3 Proposed Methodology 
This section presents the overall methodology, including the system model, the blockchain- 

enabled Zero Trust access control design, and the intelligent intrusion detection component. 

We focus on the logical architecture and the interactions among components rather than on 

low-level implementation details. 

 

3.1 System Model 
We consider a modern enterprise environment in which users, devices, and services are geo- 

graphically distributed and connected through heterogeneous networks (corporate LANs, Wi- 

Fi, VPNs, public clouds, and partner networks). The organization operates according to Zero 

Trust principles: no implicit trust is granted based on network location, and every access to a 

protected resource must be explicitly authorized and continuously re-evaluated. 

The system comprises the following main entities (also illustrated in Fig. 1): 
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• Users and devices (subjects): human users (employees, contractors, partners) and their 

associated endpoints (laptops, mobile devices, virtual machines, IoT devices). Each sub- ject 

is represented by a digital identity and a set of attributes (e.g., role, department, device 

posture). Devices may be corporate-managed or bring-your-own-device (BYOD), but access 

requirements are typically stricter for unmanaged endpoints. 

• Protected resources (objects): applications, microservices, APIs, databases, file shares, and 

other assets that expose interfaces over the network. Resources can be hosted in on-premises 

data centers, private clouds, or public cloud platforms. Each resource is associated with 

access control policies and sensitivity levels. 

• Identity Provider (IdP): an authentication and identity management service (e.g., based on 

SAML, OpenID Connect, or LDAP) that verifies user credentials, manages device 

registrations, and issues signed identity assertions containing subject identifiers and 

attributes. The IdP also participates in lifecycle management operations such as onboarding, 

offboarding, and credential revocation. 

• Policy Enforcement Point (PEP): a logical component deployed at the boundary of each 

protected resource (e.g., API gateway, reverse proxy, sidecar, host agent). The PEP intercepts 

incoming requests, extracts the relevant context (identity assertions, de- vice posture, resource 

identifier, action, environmental attributes), and consults the Policy Decision Point to obtain an 

authorization decision (e.g., allow, deny, step-up authentica- tion, limited access). 

• Policy Decision Point (PDP) / Policy Engine: the central decision-making compo- nent in the 

Zero Trust control plane. The PDP receives normalized request contexts from PEPs, retrieves 

the applicable policies and subject attributes, incorporates the latest risk information from the 

IDS, and computes the final decision according to the organization’s Zero Trust policies. The 
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PDP interacts with the blockchain to obtain tamper-evident policy and identity records and to 

record audit-relevant events. 

• Permissioned blockchain network: a consortium-style distributed ledger operated by the 

organization and, optionally, selected trusted partners. It runs a permissioned blockchain 

platform (e.g., Hyperledger Fabric) in which validator nodes are authenticated and authorized. 

The blockchain stores: 

– identity anchors and selected attributes (or cryptographic commitments to off-chain identity 

records), 

– access control policies, represented in a structured format and possibly enforced by smart 

contracts, 

– audit logs of significant security events (e.g., access decisions, policy updates, high- severity 

alerts). 

The blockchain provides integrity, tamper-evidence, and non-repudiation guarantees for these 

records. 

• Intelligent Intrusion Detection System (IDS): an AI-driven analysis component that processes 

security telemetry (primarily network flow features in this work) and outputs both binary 

intrusion predictions and continuous risk scores. The IDS is trained offline on UNSW-NB15. 

At runtime, it consumes flow/context information from PEPs and re- sources and periodically 

updates risk assessments associated with subjects (users/devices), sessions, or network 

segments. 

The logical architecture separates the data plane (actual traffic between users/devices and 

resources) from the control plane (identity, policy, risk, and logging decisions): 

• In the data plane, users and devices initiate connections to protected resources through PEPs. 

The PEPs enforce access decisions returned by the PDP and may also perform local rate 

limiting, protocol normalization, or basic input validation. 

• In the control plane, the IdP authenticates subjects and issues signed tokens; the PDP 

evaluates Zero Trust policies using identity and policy information anchored on the blockchain 

and risk scores supplied by the IDS; the blockchain provides a shared, tamper- evident store for 

critical security metadata and audit trails; and the IDS continuously refines its internal models 

and risk estimates based on observed telemetry. 

We assume that communications between these components are secured using mutually 

authenticated and encrypted channels (e.g., TLS with client certificates or modern service mesh 

solutions), and that each component has access to a hardware or software-based root of trust 

for key management. The blockchain nodes are distributed across independent administrative 

domains within the organization (e.g., different business units or data centers), so that no single 

compromised node can unilaterally rewrite history or suppress security events without detection. 

From a temporal perspective, the system model distinguishes between two phases: 

 

1. Design and provisioning phase: 

• Identities are created, and attribute schemas are defined. 

• Access control policies are authored by security administrators and deployed as on- chain 

policy records or smart contracts. 

• Blockchain nodes are provisioned, and consensus parameters are configured. 

2. Operational phase: 

• For each access attempt, the PEP extracts the context, forwards it to the PDP, and enforces 

the returned decision. 

• The PDP queries on-chain identity and policy records, retrieves the current risk score for the 

requesting subject from the IDS, and combines these inputs to produce a Zero Trust decision. 

• The resulting decision and relevant metadata (e.g., subject ID, resource ID, time, risk score, 

decision outcome) are written to the blockchain as an audit event. 
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• The IDS continuously ingests flow and log data exported by PEPs and resources, updates its 

predictions and risk scores, and optionally emits alerts; selected high- level alerts and 

aggregated risk indicators are also anchored on the blockchain. 

Within this model, trust in access control and logging does not depend on any single central 

database or log server. Instead, the combination of a permissioned blockchain and an intelligent 

IDS provides (i) robust integrity and accountability for identity, policy, and audit data, and (ii) 

dynamic, behavior-based risk assessment that can be fed back into Zero Trust policies. The 

subsequent subsections detail how access control is implemented on top of the blockchain and 

how the IDS is designed, trained, and integrated into the control plane. 

 

3.2 Blockchain-Enabled Zero Trust Access Control 
In our design, the blockchain serves three main purposes: (i) as a secure registry of identities 

and attributes, (ii) as a policy store and enforcement substrate via smart contracts, and (iii) as 

an immutable audit log of access decisions and security-relevant events. 

Identity and Attribute Management: User and device identities, along with selected attributes 

(e.g., roles, departments, device compliance status), are anchored on the blockchain as signed 

records. Updates to identities (e.g., onboarding, revocation, attribute changes) are recorded as 

transactions, ensuring a verifiable history of identity lifecycle events. The blockchain does not 

necessarily store sensitive personally identifiable information (PII) directly; instead, it can store 

pseudonymous identifiers and hashed references to off-chain identity data, preserving privacy 

while ensuring integrity. 

Policy Representation and Smart Contracts Access control policies are expressed as conditions 

over identities, attributes, resource types, and contextual signals (e.g., time, location, risk level). 

The smart contracts reference on-chain identity records and policy rules, as well as a risk score 

maintained by the IDS component. Policy evaluation results (e.g., allow, deny, require step-up 

authentication) are returned to the PDP and recorded as audit events on the blockchain. 

Audit Logging: All significant security events, including successful and failed access 

attempts, policy changes, and security alerts, are recorded on the blockchain as append-only 

logs. This provides a tamper-evident, time-stamped trail that can be used for forensic analysis, 

compliance audits, and anomaly detection. To address scalability and privacy, high-volume 

raw logs can be stored off-chain, with cryptographic hashes anchored on-chain to ensure 

integrity and non- repudiation. 

 

3.3 Intelligent Intrusion Detection 
We focus on a network-based IDS (NIDS) trained on the UNSW-NB15: 

 

Data Sources In a real deployment, the IDS would ingest network flow records, packet 

metadata, endpoint telemetry, and possibly application logs. For this study, we concentrate on 

flow-based features analogous to those provided in UNSW-NB15 [19]. These features 

capture statistics such as connection duration, bytes sent/received, packet counts, and selected 

protocol flags. 

 

Machine Learning Model We frame intrusion detection as a supervised binary classification 

problem (normal vs. malicious), with the option to extend to multi-class attack categorization. 

Let x Rd denote a feature vector derived from a network flow, and y  0, 1 the corresponding 

label (0 = normal, 1 = attack). Our goal is to learn a function fθ : R
d  [0, 1] parameterized 

by θ, that estimates the probability that a given flow is malicious: 

pˆ(y = 1 | x) = fθ(x). 

In our experiments, we consider tree-based ensemble models such as Random Forests and 

Gradient Boosted Trees, which have shown strong performance on tabular intrusion detection 
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data [17, 23]. These models can handle heterogeneous feature types and non-linear interactions, 

and provide reasonable interpretability. 

 

Risk Scoring and Integration with ZTA The IDS outputs both a binary prediction and a 

continuous anomaly or risk score r [0, 1]. We use the risk score as an input attribute in the 

ZTA policy evaluation. For example, policies may specify that: 

• For low-risk requests (r < 0.3), grant access if baseline ABAC conditions are satisfied. 

• For medium-risk requests (0.3     r < 0.7), require step-up authentication or limit access to 

non-sensitive resources. 

• For high-risk requests (r ≥ 0.7), deny access and trigger incident response workflows. The 

current risk score and selected IDS alerts for a given entity (e.g., user, device, or IP address) are 

periodically anchored on the blockchain, enabling policies to reference these attributes 

in a decentralized and verifiable manner. This creates a feedback loop in which detection out- 

comes directly influence access control decisions, while access logs provide additional context 

for detection. 

 

4 Experimental Evaluation 
This section evaluates the intelligent intrusion detection component of our framework on the 

UNSW-NB15 dataset. Our aims are to (i) assess how well a machine-learning-based IDS can 

distinguish malicious from benign flows in a realistic setting, and (ii) show that the model’s 

continuous output scores are suitable for driving risk-adaptive Zero Trust policies. 

 

4.1 Evaluation Objectives 
We focus on the following evaluation objectives: 

• Detection effectiveness: measure how accurately the model classifies flows as benign or 

malicious. 

• Error trade-offs: analyze the balance between detection rate (recall) and false positives, as 

relevant for Zero Trust enforcement. 

• Risk scoring suitability: validate that the model’s probability outputs can be inter- preted 

as meaningful risk scores for Zero Trust policy decisions. 

 

4.2 Dataset Overview 
In this work, we rely on the official training and test splits delivered as CSV files within the 

Training and Testing package. Each record corresponds to a network flow, described by 49 

features and two labels: a binary label (0 = normal, 1 = attack) and a categorical attack_cat 

specifying the attack type for malicious samples. 

Table 1 summarizes the dataset splits used in our experiments. The exact counts are ob- 

tained programmatically and can be reproduced from the public CSV files. 

 

Table 1: Overview of the UNSW-NB15 dataset splits used in our experiments. 

Split Total records Benign Malicious Malicious (%) 

Training set 175 341 56 000 119 341 68.06 

Test set 82 332 37 000 45 332 55.06 

 

The dataset’s features can be roughly grouped into four categories, as shown in Table 2. 

This grouping follows prior work on UNSW-NB15 and similar flow-based intrusion 

detection datasets [17]. 
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Preprocessing 
(cleaning, encoding, scaling) 

 
2 

Table 2: Main feature categories in UNSW-NB15 (non-exhaustive examples). 

Category Example features 

 

Basic connection dur (duration), proto (protocol), service, state 

 Content / payload sbytes, dbytes, spkts, dpkts, smean, dmean  

Time-based  stats sttl, dttl, sloss, dloss, synack, ackdat 

Connection behavior         ct_state_ttl, ct_srv_src,ct_srv_dst, ct_dst_src_ltr, s_ftp_login 

 

4.3 IDS Pipeline 
Figure 2 gives an overview of the IDS workflow applied to UNSW-NB15, from raw CSV files 

to risk scores integrated into the Zero Trust access control layer. 

 

UNSW-NB15 

CSV files 

 1 

 

 

 

 

 

Model training 

(Random Forest) 

 3 

Evaluation 

(metrics on test set) 

 4 

Risk scoring 

& ZTA integration 

 

Figure 2: Workflow of the intelligent IDS component (vertical view). (1) UNSW-NB15 

training and test CSV files are loaded; (2) features are preprocessed (cleaning, categorical 

encoding, normalization); (3) a Random Forest model is trained on the training split; (4) the 

model is evaluated on the test split and produces probability scores that are used as risk 

scores in the Zero Trust access control layer. 

 

4.4 Preprocessing Pipeline 
We apply a uniform preprocessing pipeline to both training and test sets to obtain suitable 

feature matrices for machine learning: 

1. Label selection: we use the binary label column, mapping 0 to benign and 1 to mali- cious 

traffic. 

2. Feature selection: we remove purely administrative or index-like fields (e.g., record 

identifiers) if present, and retain all informative numeric and categorical features, following 

guidelines from [17]. 

3. Handling missing and invalid values: any missing entries are imputed using appropri- ate 

strategies (median for numerical features, most frequent value for categorical features). Invalid or 

out-of-range values are either corrected or discarded, depending on frequency and impact. 
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4. Normalization: numerical features are standardized to zero mean and unit variance using 

statistics computed on the training set only. The same scaling parameters are then applied to 

the test set. 

 

4.5 Model Configuration 
We adopt a Random Forest classifier as a strong baseline for tabular intrusion detection data [17, 

23]. 

Let Dtrain = {(xi, yi)}N denote the preprocessed training dataset, where xi ∈ Rd is a 

feature vector and yi ∈ {0, 1} the label. The Random Forest model consists of K decision 

trees 

{Tk}, and the predicted probability that a flow is malicious is: 

pˆ(y = 1 | x) =   
Σ 

T (x). 

           K k=1 

We use this probability pˆ(y = 1 x) as the risk score r [0, 1] in our Zero Trust architecture. 

The main hyperparameters of our Random Forest configuration are summarized in Table 3. 

Hyperparameters are tuned empirically to achieve a good balance between detection perfor- 

mance and training time. 

 

Table 3: Random Forest hyperparameters used in our experiments. 

Hyperparameter Value 

Number of trees (K) 200 

Maximum tree depth 20 

Minimum samples per leaf 5 

Criterion  Gini impurity  

                                                                         
√

Max. Features per split #features 

Class weight balanced (to handle class imbalance) 

Random seed 42 

 

Other models (e.g., Gradient Boosted Trees, XGBoost, LightGBM, or deep learning 

archi- tectures) could also be evaluated, but we focus on Random Forests for clarity and 

computational efficiency. 

 

4.6 Results and Analysis 
Table 4 reports the main evaluation metrics of the Random Forest classifier on the UNSW-NB15 

test set for the binary intrusion detection task. The model achieves an accuracy of 0.9059, a 

precision of 0.8734, a recall of 0.9696, an F1-score of 0.9190, and a ROC-AUC of 0.9846. 

 

Table 4: Classification performance of the Random Forest IDS on the UNSW-NB15 test set 

(binary classification).  

Model Accuracy Precision Recall F1-score ROC-AUC 

Random Forest (RF) 0.9059 0.8734 0.9696 0.9190 0.9846 

 

Table 5 summarizes the confusion matrix. The model correctly identifies the majority of 

both benign and malicious flows, but exhibits a non-negligible number of false positives and 

false negatives. 
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Figure 3 provides a graphical view of the same confusion matrix using a simple 2x2 grid. 

Because our model outputs a continuous probability score pˆ(y = 1 | x) for each flow, we 

can adjust the decision threshold τ ∈ [0, 1] for classifying a flow as malicious: 

predict malicious ⇔ pˆ(y = 1 | x) ≥ τ. 
 

 Table 5: Confusion matrix  

                                           Predicted class  

True class Benign Malicious 

                               Benign                        TN = 30628 FP = 6372 

                               Malicious FN = 1377 TP = 43955 

 

                                                                         Benign   Malicious 

 

                                                      Benign 

 

 

 

 

 

                                               Malicious 

 

Predicted class 

 

Figure 3: Confusion matrix of the Random Forest IDS on the UNSW-NB15 test set. 

 

Table 6 illustrates how varying the threshold affects precision and recall. At a low threshold 

τ = 0.30, the model achieves a very high recall of 0.9960 at the expense of precision (0.7800), 

which corresponds to a highly aggressive detection regime. At τ = 0.50, precision and recall are 

more balanced (0.8734 and 0.9696), while at τ = 0.70 the model reaches a precision of 0.9472 

with a recall of 0.9171, corresponding to a stricter, low–false-positive regime. 

 

Table 6: Operating points for different decision thresholds on the RF risk score. 

Threshold τ Precision Recall Comment 

0.30 0.7800 0.9960 High recall, more false positives 

0.50 0.8734 0.9696 Balanced operating point 

0.70 0.9472 0.9171 Fewer false positives, lower recall 

 

Figure 4 presents the ROC curve of the Random Forest model, generated from the same 

experiments. The area under the ROC curve (AUC) is 0.9846, which indicates excellent dis- 

crimination between benign and malicious flows across a wide range of thresholds. 

Overall, the results demonstrate that the Random Forest model achieves high detection 

rates and excellent ROC-AUC on UNSW-NB15, in line with or exceeding prior studies on 

this dataset [17, 23]. The continuous probability outputs provide a natural and interpretable 

notion of risk that can be integrated into Zero Trust policies. Specifically, the PDP can use 

the model’s risk score as a contextual attribute when evaluating access requests, tightening or 

relaxing access based on the current assessed threat level, while the blockchain layer records 

summarized detection outcomes and high-severity alerts as tamper-evident audit events. 
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5 Discussion 

The experimental evaluation demonstrates that an ML-based IDS trained on UNSW-NB15 can 

achieve strong detection performance, supporting its use as a risk assessment engine within a 

Zero Trust framework. In this section, we discuss the broader implications, benefits, and 

limitations of integrating such an IDS with blockchain-enabled access control. 

 

 

 
 

Figure 4: ROC curve of the Random Forest IDS on the UNSW-NB15 test set. 

 

5.1 Security Benefits 
By anchoring identities, policies, and audit logs on a 

permissioned blockchain, our framework reduces the risk of undetected policy manipulation 

and log tampering. Even if an attacker compromises a single administrative domain or server, 

they cannot unilaterally alter historical records or covertly modify access policies without de- 

tection, as such changes require consensus among blockchain validators. 

The integration of IDS risk scores into ZTA policies enables dynamic, context-aware 

access control. Rather than treating detection and authorization as separate silos, our approach 

uses IDS outputs as first-class inputs to policy evaluation. This can limit the blast radius of 

successful intrusions by restricting privileges for entities exhibiting suspicious behavior, and by 

forcing re- authentication or additional verification for medium-risk activities. 

 

5.2 Performance and Scalability Considerations 
Using a blockchain for security metadata introduces performance and scalability challenges. 

Directly recording every low-level event or IDS alert on-chain may lead to excessive transaction 

volumes and latency. To mitigate this, we advocate a layered approach in which: 

• High-volume telemetry is stored off-chain, with periodic hashes anchored on-chain for 

integrity. 

• Only aggregated or policy-relevant risk scores and key events are written to the blockchain. 

• Smart contracts are designed to minimize on-chain computation, with complex analytics 

performed off-chain by the IDS and supporting services. 
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The choice of blockchain platform can be tuned to balance throughput, latency, and trust 

assumptions [8, 9]. In many enterprise settings, permissioned blockchains using crash fault 

tolerant or Byzantine fault tolerant consensus protocols can achieve transaction latencies in the 

sub-second to a few seconds range, which is sufficient for policy and logging operations that do 

not lie on the critical path of high-frequency data-plane traffic. Storing security-relevant data 

on a shared ledger raises privacy and compliance concerns, especially under regulations such as 

GDPR. Our framework addresses this by: 

• Storing only pseudonymous identifiers and non-sensitive metadata on-chain, with sensitive 

attributes kept off-chain under strict access controls. 

• Anchoring cryptographic hashes of off-chain records on-chain to provide integrity and non-

repudiation without exposing raw data. 

• Allowing for selective disclosure and data minimization in identity and attribute records. 

Nevertheless, careful legal and organizational analysis is required before deploying such 

systems in production, particularly in cross-border or multi-tenant scenarios. 

 

5.3 Limitations and Future Work 
Several limitations remain. First, our experimental evaluation focuses on a single dataset 

(UNSW-NB15) and a particular class of models (tree-based ensembles). While this is a reason- 

able starting point, further work is needed to evaluate the IDS component on multiple datasets, 

including encrypted traffic features and real-world deployment traces, and to explore more ad- 

vanced models such as deep learning architectures [20–22]. 

Second, we have described the blockchain-enabled ZTA architecture conceptually, but a 

full implementation would require detailed engineering and performance benchmarking. Pro- 

totyping the architecture using a concrete platform (e.g., Hyperledger Fabric) and measuring 

end-to-end latency, throughput, and fault tolerance under realistic workloads is important. 

Third, the trustworthiness and robustness of ML-based IDSs themselves are emerging con- 

cerns. Adversarial machine learning, data poisoning, and evasion attacks can potentially degrade 

detection performance or bias risk scores [6]. Incorporating defenses against such threats, as 

well as explainability mechanisms to support human analysts, are promising avenues for future 

work. 

 

6 Conclusion 
This paper has presented a blockchain-enabled Zero Trust access control framework augmented 

with intelligent intrusion detection for modern cybersecurity systems. By leveraging a per- 

missioned blockchain to store identities, policies, and audit logs, and by integrating an AI- 

driven IDS that provides dynamic risk scores based on network telemetry, our approach aims 

to strengthen both the trust and detection layers of enterprise security architectures. 

We reviewed the state of the art in Zero Trust, blockchain-based access control, and ML- 

based IDSs, and identified a gap in the tight integration of these components. We proposed a 

system model in which smart contracts implement risk-aware access policies, while an IDS 

trained on the UNSW-NB15 dataset supplies continuous risk assessments. Our methodology 

for training and evaluating the IDS demonstrates that modern ML models can effectively dis- 

tinguish malicious from benign flows, providing a suitable basis for risk-adaptive policies. 

Overall, our results indicate that combining AI-driven intrusion detection with a blockchain- 

backed, tamper-resistant control plane can substantially strengthen the integrity and account- 

ability of Zero Trust access decisions in modern cybersecurity systems. 

Future work includes implementing a full prototype of the proposed architecture on a concrete 

blockchain platform, extending the IDS evaluation to additional datasets and model families, 

and investigating robust and explainable ML techniques to enhance trust in automated de- 

tection. We believe that the combination of blockchain, Zero Trust, and intelligent intrusion 
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detection represents a promising direction for designing resilient and accountable cybersecurity 

systems in increasingly complex digital environments. 

 

Data Availability Statement: For more information about the data used in this study, we 

refer the readers to the following link: https://github.com/sultanalgarni330-web 
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